Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/16380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohammed Salih, H.M.-
dc.contributor.authorHussein, Rezhna M.-
dc.date.accessioned2022-12-12T11:03:18Z-
dc.date.available2022-12-12T11:03:18Z-
dc.date.issued2022-
dc.identifier.issn0213-8743-
dc.identifier.urihttp://hdl.handle.net/10662/16380-
dc.description.abstractA transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =<x1, . . . , xr>, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy group G. In this paper, we assume that G is a finite group with PSp(4, q) ≤ G ≤ Aut(PSp(4, q)) and G acts on the projective points of 3-dimensional projective geometry PG(3, q), q is a prime power. We show that G possesses no genus zero group if q > 5. Furthermore, we study the connectedness of the Hurwitz space Hinr(G) for a given group G and q ≤ 5.es_ES
dc.format.extent16 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherUniversidad de Extremadura, Servicio de Publicacioneses_ES
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectGrupo simplécticoes_ES
dc.subjectPunto fijoes_ES
dc.subjectGénero ceroes_ES
dc.subjectSymplectic groupes_ES
dc.subjectFixed pointes_ES
dc.subjectGenus zero groupes_ES
dc.titleGenus zero of projective symplectic groupses_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1201.06 Grupos, Generalidadeses_ES
dc.subject.unesco1201.09 Álgebra de Liees_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationMohammed Salih, H., & Rezhna M. Hussein, R. M. (2022). Genus zero of projective symplectic groups. Extracta Mathematicae, 37(2), 195-210. E-ISSN 2605-5686es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationSoran University. Iraqes_ES
dc.relation.publisherversionhttps://doi.org/10.17398/2605-5686.37.2.195es_ES
dc.identifier.doi10.17398/2605-5686.37.2.195-
dc.identifier.publicationtitleExtracta Mathematicaees_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationfirstpage195es_ES
dc.identifier.publicationlastpage210es_ES
dc.identifier.publicationvolume37es_ES
dc.identifier.e-issn2605-5686-
Appears in Collections:Extracta Mathematicae Vol. 37, nº 2 (2022)

Files in This Item:
File Description SizeFormat 
2605-5686_37_2_195.pdf387,98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons