Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/20375
Títulos: Finding the largest volume parallelepipedon of arbitrary orientation in a solid
Autores/as: Molano Gómez, Rubén
Caballero Jorna, Daniel
García Rodríguez, Pablo
Ávila Vegas, María del Mar
Torres Muñoz, Juan Pedro
Durán Martín-Merás, María Luisa
Sancho Núñez, José Carlos
Caro Lindo, Andrés
Palabras clave: Parallelogram;Parallelepipedon;Polyhedron;Volume of interest (VOI);Paralelogramo;Paralelípedo;Volumen de Interés (VOI)
Fecha de publicación: 2021
Editor/a: Institute of Electrical and Electronics Engineers Inc.
Resumen: 3D Computer Vision algorithms are a subject of research and application for several industrial processes. The Volume of Interest (VOI) usually refer to sub-objects with basic shapes for computing these algorithms. However, in many cases the objects are available as irregular shapes with many vertices, and in order to apply algorithms effectively, it is essential to compute the largest volume parallelepipedon contained in 3D objects. There are no other approximation algorithms for nding the largest volume parallelepipedon of arbitrary orientation inscribed in a closed 3D contour with a computational cost better than the algorithm proposed in this paper, been O(n3).
URI: http://hdl.handle.net/10662/20375
metadata.dc.relation.uri: http://creativecommons.org/licenses/by-nc-nd/4.0/
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3098234
Colección:DISIT - Artículos

Archivos
Archivo Descripción TamañoFormato 
ACCESS_2021_3098234.pdf1,19 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons