Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/20375
Títulos: | Finding the largest volume parallelepipedon of arbitrary orientation in a solid |
Autores/as: | Molano Gómez, Rubén Caballero Jorna, Daniel García Rodríguez, Pablo Ávila Vegas, María del Mar Torres Muñoz, Juan Pedro Durán Martín-Merás, María Luisa Sancho Núñez, José Carlos Caro Lindo, Andrés |
Palabras clave: | Parallelogram;Parallelepipedon;Polyhedron;Volume of interest (VOI);Paralelogramo;Paralelípedo;Volumen de Interés (VOI) |
Fecha de publicación: | 2021 |
Editor/a: | Institute of Electrical and Electronics Engineers Inc. |
Resumen: | 3D Computer Vision algorithms are a subject of research and application for several industrial processes. The Volume of Interest (VOI) usually refer to sub-objects with basic shapes for computing these algorithms. However, in many cases the objects are available as irregular shapes with many vertices, and in order to apply algorithms effectively, it is essential to compute the largest volume parallelepipedon contained in 3D objects. There are no other approximation algorithms for nding the largest volume parallelepipedon of arbitrary orientation inscribed in a closed 3D contour with a computational cost better than the algorithm proposed in this paper, been O(n3). |
URI: | http://hdl.handle.net/10662/20375 |
metadata.dc.relation.uri: | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
ISSN: | 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3098234 |
Colección: | DISIT - Artículos |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ACCESS_2021_3098234.pdf | 1,19 MB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons