Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/21073
Títulos: | Mask R-CNN for quality control of table olive |
Autores/as: | Macías Macías, Miguel Sánchez Santamaría, Héctor García Orellana, Carlos Javier González Velasco, Horacio Manuel Gallardo Caballero, Ramón García Manso, Antonio |
Palabras clave: | Detección de objetos;Máscara RCNN;Aprendizaje profundo;Aceituna de mesa;Object detection;Mask RCNN;Deep learning;Table olives |
Fecha de publicación: | 2023 |
Editor/a: | Springer |
Resumen: | In this paper we propose an object detector based on deep learning for scanning samples of table olives. For the construction of the system we have used a Mask R-CNN neural network. This network is able to segment the image providing a mask for each of the olives in the sample from which we can obtain the calibre of the object. In addition, the system is able to measure the degree of ripeness of the olives classifying them as green, semi-ripe and ripe, and identifying those fruits that are defective due to disease or damage caused by the harvesting process. The proposed system achieves success rates of 99.8% in the detection of olive fruits in photograms, 93.5% in the classification of fruit by ripeness and close to 80% in the detection of defects. |
Descripción: | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature |
URI: | http://hdl.handle.net/10662/21073 |
ISSN: | 1380-7501 |
DOI: | 10.1007/s11042-023-14668-8 |
Colección: | DISIT - Artículos ICCAEx - Artículos |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
s11042-023-14668-8.pdf | 1,91 MB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons