Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/21073
Títulos: Mask R-CNN for quality control of table olive
Autores/as: Macías Macías, Miguel
Sánchez Santamaría, Héctor
García Orellana, Carlos Javier
González Velasco, Horacio Manuel
Gallardo Caballero, Ramón
García Manso, Antonio
Palabras clave: Detección de objetos;Máscara RCNN;Aprendizaje profundo;Aceituna de mesa;Object detection;Mask RCNN;Deep learning;Table olives
Fecha de publicación: 2023
Editor/a: Springer
Resumen: In this paper we propose an object detector based on deep learning for scanning samples of table olives. For the construction of the system we have used a Mask R-CNN neural network. This network is able to segment the image providing a mask for each of the olives in the sample from which we can obtain the calibre of the object. In addition, the system is able to measure the degree of ripeness of the olives classifying them as green, semi-ripe and ripe, and identifying those fruits that are defective due to disease or damage caused by the harvesting process. The proposed system achieves success rates of 99.8% in the detection of olive fruits in photograms, 93.5% in the classification of fruit by ripeness and close to 80% in the detection of defects.
Descripción: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
URI: http://hdl.handle.net/10662/21073
ISSN: 1380-7501
DOI: 10.1007/s11042-023-14668-8
Colección:DISIT - Artículos
ICCAEx - Artículos

Archivos
Archivo Descripción TamañoFormato 
s11042-023-14668-8.pdf1,91 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons