Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/21200
Títulos: A Decomposition-based Multi-Objective Optimization Approach for Extractive Multi-Document Text Summarization
Autores/as: Sánchez-Gómez, Jesús Manuel
Vega Rodríguez, Miguel Ángel
Pérez Sánchez, Carlos Javier
Palabras clave: Multi-Document Summarization;Multi-Objective Optimization;Artificial Bee Colony;Decomposition-based;Resumen de varios documentos;Optimización multiobjetivo;Colonia de abejas artificiales;Basado en descomposición
Fecha de publicación: 2020
Editor/a: Elsevier
Series/Nº de informe.: 106231;
Resumen: Currently, due to the over ow of textual information on the Internet, automatic text summarization methods are becoming increasingly important in many elds of knowledge. Extractive multi-document text summarization approaches are intended to automatically generate summaries from a document collection, covering the main content and avoiding redundant information. These approaches can be addressed through optimization techniques. In the scienti c literature, most of them are single-objective optimization approaches, but recently multi-objective approaches have been developed and they have improved the single-objective existing results. In addition, in the eld of multi-objective optimization, decomposition-based approaches are being successfully applied increasingly. For this reason, a Multi-Objective Arti cial Bee Colony algorithm based on Decomposition (MOABC/D) is proposed to solve the extractive multi-document text summarization problem. An asynchronous parallel design of MOABC/D algorithm has been implemented in order to take advantage of multi-core architectures. Experiments have been carried out with Document Understanding Conferences (DUC) datasets, and the results have been evaluated with Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics. The obtained results have improved the existing ones in the scienti c literature for ROUGE-1, ROUGE-2, and ROUGE-L scores, also reporting a very good speedup.
Descripción: Versión aceptada de artículo publicado en la revista "Applied Soft Computing Journal", Volume 9, Junio 2020. Número de artículo 106231. DOI: 10.1016/j.asoc.2020.106231
URI: http://hdl.handle.net/10662/21200
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2020.106231
Colección:DMATE - Artículos

Archivos
Archivo Descripción TamañoFormato 
j_asoc_2020_106231.pdf672,7 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons