Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/21451
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bravo Trinidad, José Luis | - |
dc.contributor.author | Fernández García-Hierro, Manuel | - |
dc.contributor.author | Ojeda Martínez de Castilla, Ignacio | - |
dc.date.accessioned | 2024-06-07T08:26:03Z | - |
dc.date.available | 2024-06-07T08:26:03Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/10662/21451 | - |
dc.description.abstract | A criterion is obtained for the semi-stability of the isolated singular positive closed solutions, i.e., singular positive limit cycles, of the Abel equation x =A(t)x3+B(t)x2, where A, Bare smooth functions with two zeros in the interval [0, T]and where these singular positive limit cycles satisfy certain conditions, which allows an upper bound on the number of limit cycles of the Abel equation to be obtained. The criterion is illustrated by obtaining an upper bound of two positive limit cycles for the family A(t) =t(t−tA), B(t) =(t−tB)(t−1), t∈[0, 1]. In the linear trigonometric case, i.e., when A(t) =a0+a1sint+a2cost, B(t) =b0+b1sint+b2cost, an upper bound of two limit cycles is also obtained for a0, b0sufficiently small and in the region where two positive limit cycles bifurcate from the origin. | es_ES |
dc.description.sponsorship | The authors are partially supported by grant number IB18023 funded by Junta de Extremadura/FEDER. The first two authors are also partially supported by grant number GR21056 funded by Junta de Extremadura/FEDER and by grant number PID2020-118726GB-I00 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. The last author is also partially supported by grant GR21055 funded by Junta de Extremadura/FEDER and by grant number PID2022-138906NB-C21 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe” | es_ES |
dc.format.extent | 25 p. | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Abel equation | es_ES |
dc.subject | Closed solution | es_ES |
dc.subject | Periodic solution | es_ES |
dc.subject | Limit cycle | es_ES |
dc.subject | Ecuación Abel | es_ES |
dc.subject | Solución cerrada | es_ES |
dc.subject | Solución periódica | es_ES |
dc.subject | Ciclo límite | es_ES |
dc.title | Stability of singular limit cycles for Abel equations revisited | es_ES |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | es_ES |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | es_ES |
dc.subject.unesco | 12 Matemáticas | es_ES |
dc.subject.unesco | 1202.19 Ecuaciones Diferenciales Ordinarias | es_ES |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | Bravo Trinidad, J.L., Fernández García-Hierro, M., Ojeda Martínez de Castilla, I. (2024). Stability of singular limit cycles for Abel equations revisited. Journal of Differential Equations, 379, 1-25. shttps://doi.org/10.1016/j.jde.2023.10.003 | es_ES |
dc.type.version | publishedVersion | es_ES |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Matemáticas | es_ES |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0022039623006393?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/j.jde.2023.10.003 | - |
dc.identifier.publicationtitle | Journal of Differential Equations | es_ES |
dc.identifier.publicationissue | 379 | es_ES |
dc.identifier.publicationfirstpage | 1 | es_ES |
dc.identifier.publicationlastpage | 25 | es_ES |
dc.identifier.orcid | 0000-0002-0012-7699 | es_ES |
dc.identifier.orcid | 0000-0003-3173-5934 | es_ES |
Appears in Collections: | DMATE - Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
j_jde_2023_10_003.pdf | 436,82 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License