Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/21451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBravo Trinidad, José Luis-
dc.contributor.authorFernández García-Hierro, Manuel-
dc.contributor.authorOjeda Martínez de Castilla, Ignacio-
dc.date.accessioned2024-06-07T08:26:03Z-
dc.date.available2024-06-07T08:26:03Z-
dc.date.issued2023-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/10662/21451-
dc.description.abstractA criterion is obtained for the semi-stability of the isolated singular positive closed solutions, i.e., singular positive limit cycles, of the Abel equation x =A(t)x3+B(t)x2, where A, Bare smooth functions with two zeros in the interval [0, T]and where these singular positive limit cycles satisfy certain conditions, which allows an upper bound on the number of limit cycles of the Abel equation to be obtained. The criterion is illustrated by obtaining an upper bound of two positive limit cycles for the family A(t) =t(t−tA), B(t) =(t−tB)(t−1), t∈[0, 1]. In the linear trigonometric case, i.e., when A(t) =a0+a1sint+a2cost, B(t) =b0+b1sint+b2cost, an upper bound of two limit cycles is also obtained for a0, b0sufficiently small and in the region where two positive limit cycles bifurcate from the origin.es_ES
dc.description.sponsorshipThe authors are partially supported by grant number IB18023 funded by Junta de Extremadura/FEDER. The first two authors are also partially supported by grant number GR21056 funded by Junta de Extremadura/FEDER and by grant number PID2020-118726GB-I00 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. The last author is also partially supported by grant GR21055 funded by Junta de Extremadura/FEDER and by grant number PID2022-138906NB-C21 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”es_ES
dc.format.extent25 p.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAbel equationes_ES
dc.subjectClosed solutiones_ES
dc.subjectPeriodic solutiones_ES
dc.subjectLimit cyclees_ES
dc.subjectEcuación Abeles_ES
dc.subjectSolución cerradaes_ES
dc.subjectSolución periódicaes_ES
dc.subjectCiclo límitees_ES
dc.titleStability of singular limit cycles for Abel equations revisitedes_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1202 Análisis y Análisis Funcionales_ES
dc.subject.unesco12 Matemáticases_ES
dc.subject.unesco1202.19 Ecuaciones Diferenciales Ordinariases_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationBravo Trinidad, J.L., Fernández García-Hierro, M., Ojeda Martínez de Castilla, I. (2024). Stability of singular limit cycles for Abel equations revisited. Journal of Differential Equations, 379, 1-25. shttps://doi.org/10.1016/j.jde.2023.10.003es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Matemáticases_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022039623006393?via%3Dihubes_ES
dc.identifier.doi10.1016/j.jde.2023.10.003-
dc.identifier.publicationtitleJournal of Differential Equationses_ES
dc.identifier.publicationissue379es_ES
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage25es_ES
dc.identifier.orcid0000-0002-0012-7699es_ES
dc.identifier.orcid0000-0003-3173-5934es_ES
Appears in Collections:DMATE - Artículos

Files in This Item:
File Description SizeFormat 
j_jde_2023_10_003.pdf436,82 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons