Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/23784
Títulos: Multielement polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems
Autores/as: García Merino, José Carlos
Calvo Jurado, Carmen
Martínez Pañeda, Emilio
García Macías, Enrique
Palabras clave: Bayesian inference;Model calibration;Surrogate modelling;Hydrogen embrittlement;Thermal desorption spectroscopy;Thermal desorption spectroscopy;Inferencia bayesiana;Calibración de modelos;Modelado sustituto;Fragilización por hidrógeno;Espectroscopia de desorción térmica;Expansión del caos polinomial Kriging
Fecha de publicación: 2023
Editor/a: Elsevier
Resumen: This paper presents a surrogate modelling technique based on domain partitioning for Bayesian parameter inference of highly nonlinear engineering models. In order to alleviate the computational burden typically involved in Bayesian inference applications, a multielement Polynomial Chaos Expansion based Kriging metamodel is proposed. The developed surrogate model combines in a piecewise function an array of local Polynomial Chaos based Kriging metamodels constructed on a finite set of non-overlapping subdomains of the stochastic input space. Therewith, the presence of non-smoothness in the response of the forward model (e.g. nonlinearities and sparseness) can be reproduced by the proposed metamodel with minimum computational costs owing to its local adaptation capabilities. The model parameter inference is conducted through a Markov chain Monte Carlo approach comprising adaptive exploration and delayed rejection. The efficiency and accuracy of the proposed approach are validated through two case studies, including an analytical benchmark and a numerical case study. The latter relates the partial differential equation governing the hydrogen diffusion phenomenon of metallic materials in Thermal Desorption Spectroscopy tests.
URI: http://hdl.handle.net/10662/23784
ISSN: 0307-904X
DOI: 10.1016/j.apm.2022.11.039
Colección:DMATE - Artículos

Archivos
Archivo Descripción TamañoFormato 
j.apm.2022.11.039.pdf5,32 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons