Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/23791
Títulos: | A Brinkman law in the homogenization of the stationary Navier–Stokes system in a non-periodic porous medium |
Autores/as: | Calvo Jurado, Carmen Casado Díaz, Juan Luna Laynez, Manuel |
Palabras clave: | Homogenization;Navier–Stokes system;Brinkman’s law;Random porous medium |
Fecha de publicación: | 2019 |
Editor/a: | Elsevier |
Resumen: | We study the asymptotic behavior of the Navier–Stokes system with Dirichlet boundary conditions posed in a domain Ωε = Ω\Tε . Here Ω ⊂ R3 is a bounded open set and Tε is the union of many disjoint closed sets of size ε3 and density of order 1/ε3, with ε a small positive parameter. Similarly to the periodic case we get a limit system corresponding to a Brinkman flow. The difference is that now the Brinkman matrix is not homogeneous, it depends on the density of the closed sets composing Tε . The result is obtained through an adaptation of the two-scale convergence method. |
Descripción: | Journal of Computational and Applied Mathematics Volume 354, July 2019, Pages 191-197, con DOI: https://doi.org/10.1016/j.cam.2018.09.052 |
URI: | http://hdl.handle.net/10662/23791 |
DOI: | 10.1016/j.cam.2018.09.052 |
Colección: | DMATE - Artículos |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
j_cam_2018_09_052_AAM.pdf | 290,14 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons