Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/23791
Títulos: A Brinkman law in the homogenization of the stationary Navier–Stokes system in a non-periodic porous medium
Autores/as: Calvo Jurado, Carmen
Casado Díaz, Juan
Luna Laynez, Manuel
Palabras clave: Homogenization;Navier–Stokes system;Brinkman’s law;Random porous medium
Fecha de publicación: 2019
Editor/a: Elsevier
Resumen: We study the asymptotic behavior of the Navier–Stokes system with Dirichlet boundary conditions posed in a domain Ωε = Ω\Tε . Here Ω ⊂ R3 is a bounded open set and Tε is the union of many disjoint closed sets of size ε3 and density of order 1/ε3, with ε a small positive parameter. Similarly to the periodic case we get a limit system corresponding to a Brinkman flow. The difference is that now the Brinkman matrix is not homogeneous, it depends on the density of the closed sets composing Tε . The result is obtained through an adaptation of the two-scale convergence method.
Descripción: Journal of Computational and Applied Mathematics Volume 354, July 2019, Pages 191-197, con DOI: https://doi.org/10.1016/j.cam.2018.09.052
URI: http://hdl.handle.net/10662/23791
DOI: 10.1016/j.cam.2018.09.052
Colección:DMATE - Artículos

Archivos
Archivo Descripción TamañoFormato 
j_cam_2018_09_052_AAM.pdf290,14 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons