Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/24303
Title: Application of a Calibrated Building Energy Model for the optimal sizing of a photovoltaic plant: An approach from self-consumption
Authors: Fernández-Vigil Iglesias, María
Pachano, José Eduardo
Echeverría Trueba, Juan B.
Peppas, Antonis
Fernández Bandera, Carlos
Keywords: Autoconsumo;Self-consumption;Modelos energéticos de edificios (BEM);Building Energy Models (BEM);Sistemas fotovoltaicos (PV);Phovotaic systems;Autosuficiencia;Self-sufficiency;Dimensionamiento de plantas fotovoltaicas;PV plant sizing;EnergyPlus
Issue Date: 2024
Publisher: Elsevier
Abstract: El artículo aborda una metodología para dimensionar óptimamente plantas fotovoltaicas (PV) integradas en edificios, maximizando el autoconsumo (SC) y la autosuficiencia (SS) energética. Utilizando un Modelo Energético de Edificios (BEM) calibrado, el estudio analiza un edificio en Lavrio, Grecia, operando bajo un clima mediterráneo. Los resultados muestran que los modelos calibrados representan con mayor precisión el comportamiento térmico y eléctrico del edificio, destacando diferencias significativas entre modelos parcialmente calibrados y no calibrados. Esto subraya la importancia de la calibración en la toma de decisiones sobre diseño y tamaño de sistemas PV. Se evaluaron estrategias de optimización basadas en la modulación de los puntos de ajuste térmicos, utilizando el exceso de energía PV para almacenarlo en la masa térmica del edificio. Este enfoque sencillo permitió un aumento anual del 34% en SC y del 24% en SS. Además, se concluye que la calibración del sistema HVAC es esencial en simulaciones de enfriamiento, mientras que la envolvente del edificio tiene mayor impacto en escenarios de calefacción. Este método no solo optimiza el tamaño de la planta PV, sino que también fomenta la independencia de la red eléctrica, alineándose con los objetivos de descarbonización y eficiencia energética de la Unión Europea.
In the context of the decarbonization transition, the use of building-integrated photovoltaic systems has become a popular strategy. A critical challenge to be faced when designing them is their adequate sizing. A feasible approach to address this issue is to ensure that the photovoltaic plant provides the maximum possible autonomy to the building, covering its energy needs but without producing large surpluses that are fed into the grid. In essence, the objective of that approach, which is explored in this study, consists of sizing the building integrated photovoltaic system to achieve the highest levels of self-consumption and self-sufficiency. To illustrate this sizing methodology, an in-depth analysis on a real building located in Lavrio, Greece, is conducted, employing a calibrated Building Energy Model. The analyzed data corresponds to the building operation during 2019. First, this study assesses the impact that models with different levels of calibration have within the proposed PV plant sizing approach. Results indicate that non or partially calibrated building energy models differ significantly from reality. Then, based on the fully calibrated model, the optimal plant for the case-study is analyzed. In this particular test-site, the actual photovoltaic plant is significantly undersized to meet the building’s energy needs. Finally, leveraging the calibrated building energy model, a straightforward optimization strategy that involves storing excess photovoltaic production in the building’s thermal mass is implemented, which leads to an interesting increase in self-consumption and self-sufficiency. This approach not only determines the appropriate size for the photovoltaic system but also maximizes its operational efficiency.
URI: http://hdl.handle.net/10662/24303
DOI: 10.1016/j.jobe.2024.108608
Appears in Collections:DCONS - Artículos

Files in This Item:
File Description SizeFormat 
j_jobe_2024_108608.pdf
???org.dspace.app.webui.jsptag.ItemTag.accessRestricted???
2,02 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons