Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/8794
Title: Re-identificación de personas mediante la distancia de Mahalanobis
Other Titles: Person re-identification by Mahalanobis distance
Authors: Gómez Silva, María J.
Armingol, José María
de la Escalera, Arturo
Keywords: Re-identificación de personas;Matriz de Mahalanobis;Red neuronal convolucional;Mahalanobis matrix;Deep convolutional neural network;People re-identification
Issue Date: 2018
Publisher: Universidad de Extremadura
Abstract: La re-identificación de una persona requiere del aprendizaje de una distancia métrica capaz de comparar dos imágenes y decidir si pertenecen o no a la misma persona. La automatización de esta tarea, para su aplicación en videovigilancia inteligente, plantea un gran reto debido a la presencia de personas con una apariencia similar. Por ello, es necesario el aprendizaje de características discriminativas, y de una métrica que las combine apropiadamente. Sin embargo, las variaciones de iluminación, perspectiva, fondo, resolución o escala entre dos imágenes de una misma persona, capturada desde vistas diferentes, hacen que su apariencia varíe, dificultando su re-identificación. Este artículo propone la codificación de las trasformaciones entre las vistas, en una matriz de Mahalanobis, cuya estimación ha sido integrada en el aprendizaje de las características discriminativas, de modo que estas últimas puedan reflejar las disimilitudes principalmente debidas a cambios de apariencia y no de punto de vista. Esta estimación ha sido implementada como una nueva capa de una red neuronal convolucional profunda, que ha sido entrenada y evaluada con la base de datos PRID2011.
Person re-identification requires the learning of a distance metric able to compare two images and decide if they belong, or not, to the same person. The automation of this task, in order to be applied in intelligent video-surveillance, involves a great challenge, due to the presence of people with similar appearance. For that reason, it is necessary to learn discriminative features and a metric to properly combine them. However, the variations of illumination, perspective, background, resolution and scale between two images of the same person, which were captured from different views, make his or her apperance vary, hampering the re-identification. This paper proposes coding the view-to-view tranformations in a Mahalanobis matrix, whose estimation has been integrated into the discriminative features learning. In that way, these features can render the dissimilarity mainly due to appearance changes intead of the view changes. This estimation has been implemented as a new layer of a deep convolutional neural network, which has been trained and tested over the PRID2011 dataset.
Description: Comunicación presentada a las XXXIX Jornadas de Automática, celebradas en Badajoz del 5 al 7 de Septiembre de 2018 y organizada por la Universidad de Extremadura.
URI: http://hdl.handle.net/10662/8794
ISBN: 978-84-09-044460-3
Appears in Collections:XXXIX Jornadas de Automática

Files in This Item:
File Description SizeFormat 
978-84-09-04460-3_967.pdf664,85 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons