Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/8966
Títulos: Ascent and essential ascent spectrum of linear relations
Autores/as: Chafai, Ezzeddine
Mnif, Maher
Palabras clave: Ascent;Essential ascent;Perturbation;Spectrum;Linear relations;Ascenso;Ascenso esencial;Perturbación;Espectro;Relaciones lineales
Fecha de publicación: 2016
Editor/a: Universidad de Extremadura
Resumen: In the present paper, we study the ascent of a linear relation everywhere defined on a Banach space X and the related essential ascent spectrum. Some properties and characterization of such spectra are given. In particular, we show that a Banach space X is finite dimensional if and only if the ascent and the essential ascent of every closed linear relation in X is finite. As an application, we focus on the stability of the ascent and the essential ascent spectrum under perturbations. We prove that an operator F in X has some finite rank power, if and only if, σ_asc^e(T + F) = σ_asc^e (T), for every closed linear relation T commuting with F.
URI: http://hdl.handle.net/10662/8966
Colección:Extracta Mathematicae Vol. 31, nº 2 (2016)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_31_2_145.pdf152,03 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons