Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/9842
Title: Upper and lower bounds for the difference between the weighted arithmetic and harmonic operator means
Authors: Dragomir, S.S.
Keywords: Young's inequality;Convex functions;Aarithmetic mean-Harmonic mean inequality;Operator means;Operator inequalities;Desigualdad de Young;Funciones convexas;Desigualdad media aritmética media-armónica;Operador significa;Desigualdades de operador
Issue Date: 2019
Publisher: Universidad de Extremadura
Abstract: In this paper we establish some new upper and lower bounds for the difference between the weighted arithmetic and harmonic operator means under various assumption for the positive invertible operators A, B. Some applications when A, B are bounded above and below by positive constants are given as well.
URI: http://hdl.handle.net/10662/9842
DOI: 10.17398/2605-5686.34.1.41
Appears in Collections:Extracta Mathematicae Vol. 34, nº 1 (2019)

Files in This Item:
File Description SizeFormat 
2605-5686_34_1_41.pdf423,84 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons