Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/17440
Title: | Homogeneous polynomial vector fields of degree 2 on the 2―dimensional sphere |
Authors: | Llibre, Jaume Gomes Pessoa, Claudio |
Keywords: | CĂrculo invariante;CĂrculo máximo invariante;Campo vectorial polinomial;Invariant circle;Invariant great circle;Polynomial vector field |
Issue Date: | 2006 |
Publisher: | Universidad de Extremadura, Servicio de Publicaciones |
Abstract: | Let X be a homogeneous polynomial vector field of degree 2 on 𝕊² having finitely many invariant circles. Then, we prove that each invariant circle is a great circle of 𝕊², and at most there are two invariant circles. We characterize the global phase portrait of these vector ¯elds. Moreover, we show that if X has at least an invariant circle then it does not have limit cycles. |
URI: | http://hdl.handle.net/10662/17440 |
ISSN: | 0213-8743 |
Appears in Collections: | Extracta Mathematicae Vol. 21, nÂş 2 (2006) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2605-5686_21_2_167.pdf | 266,07 kB | Adobe PDF | View/Open | |
2605-5686_21_2_167_Abstract.pdf | 91,11 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License