Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/17443
Title: Non-trivial derivations on commutative regular algebras
Authors: Ber, A.F.
Chilin, V.I.
Sukochev, F.A.
Keywords: Derivaciones no triviales;Álgebras regulares conmutativas;Non-trivial derivations;Commutative regular algebras
Issue Date: 2006
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: Necessary and suffcient conditions are given for a (complete) commuta- tive algebra that is regular in the sense of von Neumann to have a non-zero derivation. In particular, it is shown that there exist non-zero derivations on the algebra L(M) of all measurable operators affliated with a commutative von Neumann algebra M, whose Boolean algebra of projections is not atomic. Such derivations are not continuous with respect to measure convergence. In the classical setting of the algebra S[0; 1] of all Lebesgue measurable func- tions on [0; 1], our results imply that the first (Hochschild) cohomology group H¹(S[0; 1]; S[0; 1]) is non-trivial.
URI: http://hdl.handle.net/10662/17443
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 21, nº 2 (2006)

Files in This Item:
File Description SizeFormat 
2605-5686_21_2_107.pdf284,64 kBAdobe PDFView/Open
2605-5686_21_2_107_Abstract.pdf85,67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons