Please use this identifier to cite or link to this item:
Title: Moving Weyl’s theorem from ⨍(T) to T
Authors: Febronio Rodríguez, M.
Duggal, B.P.
Djordjević, S.V.
Keywords: Teorema de weyl;Teorema de Browder;SVEP;Weyl's theorem;Browder's theorem
Issue Date: 2018
Publisher: Universidad de Extremadura
Abstract: Schmoeger has shown that if Weyl's theorem holds for an isoloid Banach space operator T ∈ B(X) with stable index, then it holds for ⨍(T) whenever ⨍ ∈ Holo σ (T) is a function holomorphic on some neighbourhood of the spectrum of T. In this note we establish a converse.
DOI: 10.17398/2605-5686.33.2.209
Appears in Collections:Extracta Mathematicae Vol. 33, nº 2 (2018)

Files in This Item:
File Description SizeFormat 
2605-5686_33_2_209.pdf109,23 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons