Please use this identifier to cite or link to this item:
Title: Ostrowski type fractional integral inequalities for generalized (g, s, m, φ)-preinvex functions
Authors: Kashuri, Artion
Liko, Rozana
Keywords: Ostrowski type inequality;Hölder's inequality;Power mean inequality;Riemann- Liouville fractional integral;s-convex function in the second sense;m-invex;P-function;Desigualdad de tipo Ostrowski;Desigualdad de Hölder;Desigualdad media de potencia;Integral de Riemann-Liouville;Función s-convexa en el segundo sentido
Issue Date: 2017
Publisher: Universidad de Extremadura
Abstract: In the present paper, a new class of generalized (g, s, m, φ)-preinvex function is introduced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature formula involving generalized (g, s, m, φ)-preinvex functions are given. Moreover, some generalizations of Ostrowski type inequalities for generalized (g, s, m, φ)-preinvex functions via Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given.
Appears in Collections:Extracta Mathematicae Vol. 32, nº 1 (2017)

Files in This Item:
File Description SizeFormat 
2605-5686_32_1_105.pdf136,13 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons