Please use this identifier to cite or link to this item:
Title: Trace inequalities of Lipschitz type for power series of operators on Hilbert spaces
Authors: Dragomir, S.S.
Keywords: Banach algebras of operators on Hilbert spaces;Power series;Lipschitz type inequalities;Jensen’s type inequalities;Trace of operators;Hilbert-Schmidt norm;Álgebras de Banach de operadores en espacios de Hilbert;Series de Power;Desigualdades de tipo Lipschitz;Desigualdades de tipo de Jensen;Traza de operadores;Norma de Hilbert-Schmidt
Issue Date: 2017
Publisher: Universidad de Extremadura
Abstract: Let f (z) = ∑_(n=0)^∞▒∝_(n ) z^n be a function defined by power series with complex coefficient s and convergent n the open disk D(0;R) ⊂ ℂ, R > 0. We show, amongst other that, if T, V ∈ β_1(H), the Banach space of all trace operators on H, are such that ∥T∥₁ ,∥V∥₁ < R, then f(V ), f(T), f ′ ((1 − t)T + tV ) ∈ ℬ₁ (H) for any t ∈ [0; 1] and tr [f(V )] − tr [f(T)] = ∫_0^1▒tr [ (V − T)f ′( (1 − t)T + tV )] dt. Several trace inequalities are established. Applications for some elementary functions of interest are also given.
Appears in Collections:Extracta Mathematicae Vol. 32, nº 1 (2017)

Files in This Item:
File Description SizeFormat 
2605-5686_32_1_25.pdf175,17 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons