Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/9014
Title: Sharp upper estimates for the first eigenvalue of a Jacobi type operator
Authors: Lima, Henrique F. de
Sousa, A.F. de
Santos, Fábio R. dos
Velásquez, Marco Antonio L.
Keywords: Euclidean space;Euclidean sphere;Closed hypersurfaces;r-th mean curvatures;Jacobi operator;Reilly type inequalities;Espacio euclidiano;Esfera euclidiana;Hipersuperficies cerradas;Curvaturas medias r-th;Operador Jacobi;Desigualdades de tipo Reilly
Issue Date: 2016
Publisher: Universidad de Extremadura
Abstract: Our purpose in this article is to obtain sharp upper estimates for the first positive eigenvalue of a Jacobi type operator, which is a suitable extension of the linearized operators of the higher order mean curvatures of a closed hypersurface immersed either in the Euclidean space or in the Euclidean sphere.
URI: http://hdl.handle.net/10662/9014
Appears in Collections:Extracta Mathematicae Vol. 31, nº 1 (2016)

Files in This Item:
File Description SizeFormat 
2605-5686_31_1_69.pdf140,05 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons