Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/9029
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouilah, Khalid
dc.date.accessioned2019-03-29T07:36:01Z
dc.date.available2019-03-29T07:36:01Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10662/9029
dc.description.abstractIn this article we provide a complete description of all additive surjective unital maps in the algebra of all bounded linear operators acting on an infinite-dimensional Hilbert space, preserving in both directions the set of non-invertible algebraic operators or the set of invertible algebraic operators.es_ES
dc.format.extent14 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherUniversidad de Extremaduraes_ES
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectAlgebraic operatorses_ES
dc.subjectLinear preserver problemses_ES
dc.subjectOperadores algebraicoses_ES
dc.subjectProblemas de preservadores linealeses_ES
dc.titleOn additive preservers of certain classes of algebraic operatorses_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1202.01 Álgebra de Operadoreses_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationSouilah, K. (2015). On additive preservers of certain classes of algebraic operators. Extracta Mathematicae 30 (2), 207-220. E-ISSN 2605-5686es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversité Mohamed Premier. Marocfr_FR
dc.identifier.publicationtitleExtracta Mathematicaees_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationfirstpage207es_ES
dc.identifier.publicationlastpage220es_ES
dc.identifier.publicationvolume30es_ES
dc.identifier.e-issn2605-5686
Appears in Collections:Extracta Mathematicae Vol. 30, nº 2 (2015)

Files in This Item:
File Description SizeFormat 
2605-5686_30_2_207.pdf109,75 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons