The geometry of ℒ(³Ɩ²∞) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials

DSpace/Manakin Repository

español português english

The geometry of ℒ(³Ɩ²∞) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials

Show full item record

Title: The geometry of ℒ(³Ɩ²∞) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials
Author: Kim, Sung Guen
Abstract: Clasificamos las formas 3-lineales extremas y expuestas de la bola unitaria de ℒ(³Ɩ²∞). Introducimos constantes óptimas en la desigualdad de Bohnenblust-Hille para formas multilineales y polinomios simétricos e investigamos sobre sus relaciones.We classify the extreme and exposed 3-linear forms of the unit ball of ℒ(³Ɩ²∞). We introduce optimal constants in the Bohnenblust-Hille inequality for symmetric forms and polynomials and investigate about their relations.
URI: http://hdl.handle.net/10662/8348
Date: 2018


Files in this item

Files Size Format View
2605-5686_33_1_51.pdf 121.6Kb PDF Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Atribución-NoComercial 3.0 España Except where otherwise noted, this item's license is described as Atribución-NoComercial 3.0 España

Search DSpace


Browse

My Account

Statistics

Help

Redes sociales