Non-additive Lie centralizer of strictly upper triangular matrices

DSpace/Manakin Repository

español português english

Non-additive Lie centralizer of strictly upper triangular matrices

Show full item record

Title: Non-additive Lie centralizer of strictly upper triangular matrices
Author: Ahmed, Driss Aiat Hadj
Abstract: Let ℱ be a field of zero characteristic, let Nn(ℱ) denote the algebra of n X n strictly upper triangular matrices with entries in ℱ, and let ƒ : Nₙ(ℱ) → Nₙ(ℱ) be a non-additive Lie centralizer of Nₙ(ℱ), that is, a map satisfying that ƒ([X; Y ]) = [ƒ(X); Y ] for all X; Y ∈ Nₙ(ℱ). We prove that ƒ(X) = ⋋ X + ƞ (X) where ⋋ ∈ ℱ and ƞ is a map from Nₙ(ℱ) into its center Ƶ (Nₙ(F)) satisfying that ƞ([X; Y ]) = 0 for every X; Y in Nₙ(ℱ).
URI: http://hdl.handle.net/10662/9983
Date: 2019


Files in this item

Files Size Format View
2605-5686_34_1_77.pdf 285.2Kb PDF View  Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Attribution-NonCommercial-NoDerivatives 4.0 International Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

Search DSpace


Browse

My Account

Statistics

Help

Redes sociales