Please use this identifier to cite or link to this item:
Title: Remarks on Gurariĭ Spaces
Authors: Garbulińska, Joanna
Kubiś, Wieslaw
Keywords: Gurariĭ Spaces;(Almost) linear isometry;Universal disposition;Projection;Rotund renorming;Complementation;Espacio Gurari;Isometría (casi) lineal;Disposición universal;Proyección
Issue Date: 2011
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: We present selected known results and some new observations, involving Gurariĭ Spaces. A Banach space is Gurariĭ Spaces if it has certain natural extension property for almost isometric embeddings of finite-dimensional spaces. Deleting the word \almost", we get the notion of a strong Gurariĭ Spaces. There exists a unique (up to isometry) separable Gurariĭ Spaces, however strong Gurariĭ Spaces cannot be separable. The structure of the class of non-separable Gurariĭ Spaces seems to be not very well understood. We discuss some of their properties and state some open questions. In particular, we characterize nonseparable Gurariĭ Spaces in terms of skeletons of separable subspaces, we construct a nonseparable Gurariĭ Spaces with a projectional resolution of the identity and we show that no strong Gurariĭ Spaces can be weakly Lindelӧf determined.
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 26, nº 2 (2011)

Files in This Item:
File Description SizeFormat 
2605-5686_26_2_235.pdf204,04 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons