Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/15392
Títulos: On the existence of prolongations of connections by bundle functors
Autores/as: Mikulski, W.M.
Palabras clave: Conexión genera;Conexión lineal clásica;Funtor de haz (vector) (gauge);Producto de fibra que conserva el funtor de haz;Álgebra de Weil;Isomorfismo natural;Operador natural (gauge)
Fecha de publicación: 2007
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: We construct canonically a general connection Aᶠ (Ґ,∇) on Fₚ: FY → FM from a general connection Ґ on a fibred manifold p: Y → M by means of a projectable classical linear connection ∇ on Y , where 𝐹 : M𝑓 → Vβ is a vector bundle functor. In the case of a not necessarily vector bundle functor F : M𝑓 →FM we find some simple equivalent condition on the existence of a general connection A(Ґ,∇) on Fₚ : FY →FM from a general connection Ґ on Y → M by means of a projectable classical linear connection. ∇ on Y . We present a construction of a classical linear connection Aᶠ (∇) on FY from a projectable classical linear connection ∇ on Y for any fiber product preserving bundle functor 𝐹: FMₘ → FM. We characterize bundle functors 𝐹: Fₘ,ₙ→ FM which admit a construction of a classical linear connection A(∇) on FY from a projectable classical linear connection ∇ on Y . We characterize gauge bundle functors 𝐹: VBₘ,ₙ → FM which admit a construction of a classical linear connection A (D, ∇) on FE from a linear general connection D on E → M by means of a classical linear connection ∇ on M.
URI: http://hdl.handle.net/10662/15392
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 22, nº 3 (2007)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_22_3_297.pdf205,32 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons