Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/16380
Title: Genus zero of projective symplectic groups
Authors: Mohammed Salih, H.M.
Hussein, Rezhna M.
Keywords: Grupo simpléctico;Punto fijo;Género cero;Symplectic group;Fixed point;Genus zero group
Issue Date: 2022
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: A transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =<x1, . . . , xr>, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy group G. In this paper, we assume that G is a finite group with PSp(4, q) ≤ G ≤ Aut(PSp(4, q)) and G acts on the projective points of 3-dimensional projective geometry PG(3, q), q is a prime power. We show that G possesses no genus zero group if q > 5. Furthermore, we study the connectedness of the Hurwitz space Hinr(G) for a given group G and q ≤ 5.
URI: http://hdl.handle.net/10662/16380
ISSN: 0213-8743
DOI: 10.17398/2605-5686.37.2.195
Appears in Collections:Extracta Mathematicae Vol. 37, nº 2 (2022)

Files in This Item:
File Description SizeFormat 
2605-5686_37_2_195.pdf387,98 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons