Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/20662
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPadfield, Natasha-
dc.contributor.authorZabalza, Jaime-
dc.contributor.authorZhao, Huimin-
dc.contributor.authorMasero Vargas, Valentín-
dc.contributor.authorRen, Jinchang-
dc.date.accessioned2024-02-21T09:30:35Z-
dc.date.available2024-02-21T09:30:35Z-
dc.date.issued2019-
dc.identifier.issn14248220-
dc.identifier.other2-s2.0-85063793137-
dc.description.abstractElectroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.es_ES
dc.description.sponsorshipThis research was funded by the PhD Scholarship Scheme of the University of Strathclyde, National Natural Science Foundation of China (61672008), Guangdong Provincial Application-oriented Technical Research and Development Special fund project (2016B010127006), Scientific and Technological Projects of Guangdong Province (2017A050501039) and Guangdong Key Laboratory of Intellectual Property Big Data (No.2018B030322016) of China.es_ES
dc.format.extent34 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBrain-computer interface (BCI)es_ES
dc.subjectInterfaz cerebro-ordenadores_ES
dc.subjectElectroencephalography (EEG)es_ES
dc.subjectElectroencephalografía (EEG)es_ES
dc.subjectMotor-imagery (MI)es_ES
dc.subjectImagen de motricidad (IM)es_ES
dc.titleEEG-based brain-computer interfaces using motor-imagery: Techniques and challengeses_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco1203 Ciencia de Los Ordenadoreses_ES
dc.subject.unesco1203.17 Informáticaes_ES
dc.subject.unesco1203.04 Inteligencia Artificiales_ES
dc.subject.unesco1203.20 Sistemas de Control Medicoes_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationPadfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors 2019, 19, 1423. https://doi.org/10.3390/s19061423es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversity of Strathclyde. UKes_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Ingeniería de Sistemas Informáticos y Telemáticoses_ES
dc.contributor.affiliationGuangdong Polytechnic Normal University. China-
dc.contributor.affiliationTaiyuan University of Technology. China-
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/19/6/1423es_ES
dc.identifier.doi10.3390/s19061423-
dc.identifier.publicationtitleSensorses_ES
dc.identifier.publicationissue6es_ES
dc.identifier.publicationfirstpage1423-1es_ES
dc.identifier.publicationlastpage1423-34es_ES
dc.identifier.publicationvolume19es_ES
dc.identifier.orcid0000-0003-4839-8292es_ES
Appears in Collections:DISIT - Artículos

Files in This Item:
File Description SizeFormat 
s19061423.pdf1,96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons