Please use this identifier to cite or link to this item:
http://hdl.handle.net/10662/20662
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Padfield, Natasha | - |
dc.contributor.author | Zabalza, Jaime | - |
dc.contributor.author | Zhao, Huimin | - |
dc.contributor.author | Masero Vargas, Valentín | - |
dc.contributor.author | Ren, Jinchang | - |
dc.date.accessioned | 2024-02-21T09:30:35Z | - |
dc.date.available | 2024-02-21T09:30:35Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 14248220 | - |
dc.identifier.other | 2-s2.0-85063793137 | - |
dc.description.abstract | Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs. | es_ES |
dc.description.sponsorship | This research was funded by the PhD Scholarship Scheme of the University of Strathclyde, National Natural Science Foundation of China (61672008), Guangdong Provincial Application-oriented Technical Research and Development Special fund project (2016B010127006), Scientific and Technological Projects of Guangdong Province (2017A050501039) and Guangdong Key Laboratory of Intellectual Property Big Data (No.2018B030322016) of China. | es_ES |
dc.format.extent | 34 p. | es_ES |
dc.format.mimetype | application/pdf | en_US |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Brain-computer interface (BCI) | es_ES |
dc.subject | Interfaz cerebro-ordenador | es_ES |
dc.subject | Electroencephalography (EEG) | es_ES |
dc.subject | Electroencephalografía (EEG) | es_ES |
dc.subject | Motor-imagery (MI) | es_ES |
dc.subject | Imagen de motricidad (IM) | es_ES |
dc.title | EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges | es_ES |
dc.type | article | es_ES |
dc.description.version | peerReviewed | es_ES |
europeana.type | TEXT | en_US |
dc.rights.accessRights | openAccess | es_ES |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | es_ES |
dc.subject.unesco | 1203.17 Informática | es_ES |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es_ES |
dc.subject.unesco | 1203.20 Sistemas de Control Medico | es_ES |
europeana.dataProvider | Universidad de Extremadura. España | es_ES |
dc.identifier.bibliographicCitation | Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors 2019, 19, 1423. https://doi.org/10.3390/s19061423 | es_ES |
dc.type.version | publishedVersion | es_ES |
dc.contributor.affiliation | University of Strathclyde. UK | es_ES |
dc.contributor.affiliation | Universidad de Extremadura. Departamento de Ingeniería de Sistemas Informáticos y Telemáticos | es_ES |
dc.contributor.affiliation | Guangdong Polytechnic Normal University. China | - |
dc.contributor.affiliation | Taiyuan University of Technology. China | - |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/19/6/1423 | es_ES |
dc.identifier.doi | 10.3390/s19061423 | - |
dc.identifier.publicationtitle | Sensors | es_ES |
dc.identifier.publicationissue | 6 | es_ES |
dc.identifier.publicationfirstpage | 1423-1 | es_ES |
dc.identifier.publicationlastpage | 1423-34 | es_ES |
dc.identifier.publicationvolume | 19 | es_ES |
dc.identifier.orcid | 0000-0003-4839-8292 | es_ES |
Appears in Collections: | DISIT - Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s19061423.pdf | 1,96 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License