Please use this identifier to cite or link to this item:
Title: Non-additive Lie centralizer of strictly upper triangular matrices
Authors: Ahmed, Driss Aiat Hadj
Keywords: Lie centralizer;Strictly upper triangular matrices;Commuting map;Centralizador de Lie;Matrices triangulares estrictamente superiores;Mapa de conmutación
Issue Date: 2019
Publisher: Universidad de Extremadura
Abstract: Let ℱ be a field of zero characteristic, let Nn(ℱ) denote the algebra of n X n strictly upper triangular matrices with entries in ℱ, and let ƒ : Nₙ(ℱ) → Nₙ(ℱ) be a non-additive Lie centralizer of Nₙ(ℱ), that is, a map satisfying that ƒ([X; Y ]) = [ƒ(X); Y ] for all X; Y ∈ Nₙ(ℱ). We prove that ƒ(X) = ⋋ X + ƞ (X) where ⋋ ∈ ℱ and ƞ is a map from Nₙ(ℱ) into its center Ƶ (Nₙ(F)) satisfying that ƞ([X; Y ]) = 0 for every X; Y in Nₙ(ℱ).
DOI: 10.17398/2605-5686.34.1.77
Appears in Collections:Extracta Mathematicae Vol. 34, nº 1 (2019)

Files in This Item:
File Description SizeFormat 
2605-5686_34_1_77.pdf285,29 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons