Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/23415
Títulos: Dimensional curvature identities in Fedosov geometry
Autores/as: Gordillo Merino, Adrián
Martínez Bohórquez, Raúl
Navarro Garmendia, José
Palabras clave: Identidades dimensionales;Dimensional identities;Operaciones naturales;Natural operations;Variedades de Fedosov;Fedosov manifolds
Fecha de publicación: 2024
Resumen: The curvature tensor of a symplectic connection, as well as its covariant deriva tives, satisfy certain identities that hold on any manifold of dimension less than or equal to a fixed n. In this paper, we prove certain results regarding these curvature identities. Our main result describes, for any fixed dimension and any even number p of indices, the first space (provided we have filtered the identities by a homogeneity condition) of p-covariant curvature identities. To this end, we use recent results on the theory of natural operations on Fedosov mani folds. These results allow us to apply the invariant theory of the symplectic group, with a method that is analogous to that used in Riemannian or Kähler geometry.
Descripción: Publicado en: Journal of Geometry and Physics Open Access, Volume 198, April 2024, Article number 105137 DOI: 10.1016/j.geomphys.2024.105137
URI: http://hdl.handle.net/10662/23415
Colección:DDCEM - Artículos
DMATE - Artículos

Archivos
Archivo Descripción TamañoFormato 
arxiv_2402_01850.pdf164,48 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons